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ABSTRACT

BicHARA, M., and LAKSHMANAN, ]., 1976, Fast Automatic Processing of Resistivity
Soundings, Geophysical Prospecting 24, 354-370.

The difficulty to use master curves as well as classical techniques for the determination
of layer distribution (e, p;) from a resistivity sounding arises when the presumed number
of layers exceeds five or six.

The principle of the method proposed here is based on the identification of the re-
sistivity transform. This principle was recently underlined by many authors. The re-
sistivity transform can be easily derived from the experimental data by the application
of Ghosh’s linear filter, and another method for deriving the filter coefficientes is suggested.

For a given theoretical resistivity transform corresponding to a given distribution
of layers (thicknesses and resistivities) various criteria that measure the difference be-
tween this theoretical resistivity transform and an experimental one derived by the
application of Ghosh's filter are given. A discussion of these criteria from a physical as
well as a mathematical point of view follows.

The proposed method is then exposed; it is based on a gradient method. The type
of gradient method used is defined and justified physically as well as with numerical
examples of identified master curves. The practical use for the method and experimental
confrontation of identified field curves with drill holes are given. The cost as well as
memory occupation and time of execution of the program on CDC 7600 computer is
estimated.

1. INTRODUCTION
Several authors (Koefoed 1968, Kunetz 1966, Kunetz and Rocroi 1970,
Marsden 1973) have published methods for automatic interpretation of re-
sistivity soundings. The most interesting approach seems to be that using
linear filters relating (in both directions) apparent resistivities and the kernel
function (Ghosh 1971).

The ideas followed in the present papers are:

— attainment of more accuracy in the filters,
— fast identification, by the gradient method, of the kernel function,
— when possible, use of a geological model.
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different layers, together with the boundaries imposed upon resistivities.
Thicknesses were fixed to the known values within + 0.20 m.

On fig. 4 we have represented the reconstituted and experimental curves
As one can notice these curves are nearly identical, and the identification
criterium is fairly good.

Memory occupation and cost of the computer program for a CDC 7600

Memory occupation is, for the fundamental program 1ok words of 60 bits
and for the actual version, 14k words of 60 bits.

Computing time for the identification of a curve is of 1.2 seconds on an
average. In fact this time is dependent upon the precision desired on the
criterium, and on the maximum of iterations allowed.

Both parameters are fixed by the user.

6. CONCLUSION

The method exposed, based upon identification of the resistivity transform
function, has the advantage of being fast and economical. It can be applied to
superficial or deep problems, with a number of layers the user chooses freely,
and the possibility to impose upper and lower boundaries on the layer para-
meters. In this way geological data can be injected in the program. Never-
theless, in certain cases the method lacks accuracy. We are presently working
on the refinement of the gradient procedure developed in 4.

Many numerical experiments were necessary before any important improve-
ments could be achieved, but we are confident that these will never be vain.

The program is currently used on about 409, of resistivity soundings made
by the Compagnie de Prospection Géophysique Francaise, for AB lengths
usually of the order of 300 to 500 meters.

Already about zooo soundings have been computed by the ELECTRA 02
program.
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Example of a drilled hole fit (fig. 4)
An electrical sounding was executed on the location of a mechanical sound-
ing. The following table gives the resistivities, thicknesses and depths of the
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Tig. 4. Identification of resistivity sounding on drill hole.
TABLE 1

G Ompmisonfof drill hole log with resistivity interpretation

Drill hole log Computer results
Limiting Resisti-

Depths Section Thickness resistivity vity Thickness
o - 1,10 Clayey gravel 1,10 m I,30m
1,10- 5,40 Dry gravel 4,30 80-1000 Om 121 Om 0,90

500-1000 760 3,20
5,40- 8,90 Wet gravel 3,50 150- 300 265 3,30
8,00- 9,90 Clay I I0- 50 37 T
9,90-10,80 Gravel 0,90 100- 200 150 0,80
10,80-13,40 Clay and silt 2,60 10- 40 13 2,80
13,40-16,30 Gravel 2,90 8o- 250 124 3,10
16,30-17,30 Clayey silt 1 10- 70 13 0,90
17,30-23,10 Gravel 5,80 8o- 250 119 5,70
23,10 Clay 34 Total
depth:

23 m
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numerical experiments have led to far better results for identified theoretical
curves. A 1,59, overall error is frequently realized provided that some para-
meters are fixed so that no ambiguity due to the principle of equivalence
remains.
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Tig. 3. Example of identification.

b) Identification by a six layer curve

In this case we asked the computer to carry out a six layer identification
without giving any boundaries on resistivities or thicknesses. As seen on fig. 3
the given and the reconstituted curves are practically identical. We obtain
R = e;p; = 1640 instead of 2000, and C = e;fp; = 0,57 instead of 0,50. This
anomaly can be explained by the fact that the first conductor with the value
of p of 66 Qm plays in the descending part of the curve the role of a resistor and
this should be added for a part to the transverse resistance. One sees with this
example the danger of applying blindly the principle of equivalence.

Analysis of Dar Zaruk curves should prove more useful.

c) Identification with eight layers
As seen in fig. 3 we obtain a transverse resistance of R = 2130 Qm? instead
of 2000 Qm?2, and a conductance of 0,59 instead of o,50.
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b) Method with a maximuwm degree of freedom
In this method the number of layers is taken equal to 20 (for the present
program) and no limit whatsoever is imposed upon upper and lower
boundaries of thicknesses and resistivities.

The output of the computer program are:

1) a table of results: thicknesses and resistivities,

2) Dar Zaruk parameters for the identified curve,

3) the number of iterations that have been run, the value of the criterium,
the module of the last computed gradient (see 4.3),

4) a diagram that represents the experimental and identified (apparent
resistivity curve).

Concerning the actual criterium used (see 4), we noticed that: a criterium
greater than 0,5.10-1 indicates a bad identification, whereas a criterium that
is less than 0,5.10 2 indicates an excellent one.

Numerical experiments

We describe two numerical experiments. For more details about the pos-
sibilities of the computer program the reader is referred to (Lakshmanan,
Bertrand, and Bichara 1974).

Example 1 (fig. 3)
We have introduced the theoretical curve corresponding to the following
configuration.

p1 = 100 OQm e1 = 2m
pz = 1000 Qm gz — 21 e2p2 = 2000 Qm?
ps = 20 OQm €3 = I0Mm eafps = 0,5 Q-1

pa = T000 Odm

Many solutions that lead to this theoretical curve can be found within the
boundaries:

260 < pa << @ 0 < ea <47
0 < ps < 50 0 < ey < 2,8

a) Rigid interpretation

Four layers with depths fixed to 5 m for the resistive layer and 25 m for the
conductive layer. Resistivities are let free (no upper or lower boundaries on
resistivities). The results are shown in fig. 2. As the reader can notice there is
little difference between the given and the identified curves. As for the trans-
verse resistances and conductances these are identified with 109, error; other
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The calculation of the gradient of C can easily by derived from the calcula-
tion of T'(A, e1, ..., ep—1, p1, ..., pu) and (377 d¢;), 3T/ dp;) at each of the points
lj,j:I, el

This method, which could be considered as a variant of the gradient method,
has been chosen after various numerical experiments. In fact, for the same
reduction criterium, it resulted in the division of the number of iterations by a
factor of 1.2 to 2.

A note should be made as to the initial value that should be taken for 6
(see 4.1).

We took for the first iteration 0 = 0.2 ¢/ || g ||2, where:

— ¢ s the value of the criterium at the initial point
— llglP=g +g& + ... + g, + g, , is the module of the gradient.

This corresponds to estimating that a 20%, reduction of the criterium could
be realized in the first iteration.

As for the computing of T and its derivatives, one can apply Flathe’s recur-
rence algorithm (Ghosh 1971).

5. EXPERIMENTAL RESULTS
Computer program and expertmental results

The inputs of the computer program are:

1) the values of the experimental data (value of apparent resistivities
measured in the field),
2) the number of layers the user wishes to have in the solution,
" 3) the values of the upper and lower boundaries of thicknesses, and re-
sistivities the user wishes to impose upon the solution, and
4) the maximum number of iterations and the criterium the user wishes to
attain.

Two methods can thus be used:

a) Fixed method

We impose a fixed number of layers that fits the geological survey. We
can then:

— fix the thicknesses and let the resistivities free in order to fit a drill hole,

— fix some of the thicknesses and let the others free, or

— impose logical upper and lower boundaries on the resistivities and let
the thicknesses free

Geophysical Prospecting, Vol. 24 24
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K—=1
A Z (Tyn —T9) — Ty, ) — Ty, .. .))2

£ | T5(Tj41 — Ty) |
where the significance of 7; and ; is clear from above, As the reader will
notice such a criterium gives importance not only to the relative difference
between the theoretical and experimental transform functions, but also to the
difference between the derivatives of those two functions.

The gradient procedure used is basically the same as the one outlined above

and differs mainly in the following points:

— in step a) introduce a value % and set it to o,
— in step d) instead of displacing the vector m (which here corresponds to
(e1, p2, €2, 03, ..., pu-1, ep-1) of 08, displace it of Bp;, where

8 — (gel; gp,,, ooy Bew et v s on—1s gen—I)

2C W
ei — h_gi, et = D_Pz
Do B B, v ohss taes)
P == (0,0, 5580 ok Bop 50,5 1%/ 0),

Pu-1= ((), 0, .., 8eu-uv gﬂn—1)'

Furthermore if (¢;, s, €a, p3, @y_1, €,-1) is the vector obtained by this dis-
placement (represented by my in the algorithm described),
replace (g;' Péj g‘;r P;J s 'J.P-n,—lr ﬂ_" J) by (31, Par €25 Pas - - Pn-1 eu—l)
where:

&= if Cimin == i, maz
€ = Cimin if g < €, min
€ = & max if e > & maw
and
P: = Pi if Pimin = Pi = Pimaz

Pi = Pi,min if gy =< Pi, min
Pt — Pumax if p; > Pi,max
— instep e) add 1 to &, and if & > — 1, set & to o.

These modifications correspond to making a cyclical search by varying the
parameters of cach layer independently, and every # iterations make a global
search for all parameters. Furthermore, during the search, in step d), we keep
the parameters within the specified intervals.
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4.3. Algorithm (see fig. 2)
The algorithm developed is based on a gradient procedure. As explained
above, a criterium that measures the difference between the experimental and

- PROPOSED USER SOLUTION:
€i’'s AND Pi’s i= I,.., N

-INTERVAL OF VARIATION
Eimn € Imax
Pimin P imax

~MEASURED FIELD WALUES

!

STEP | = COMPUTATION OF THE
RESISTIVITY TRANSFORM FUNCTION T

=|
-

STEP2.A, COMPUTATION OF THE
CRITERIUM VALUE FOR THE ACTUAL
SOLUTION

Pas

IS THE CRITERIUM VALUE
SATISFACTORY

STEP 2.B: COMPUTATI OF ,THE
GRADIENT . COMPONENTS

1
STEP 2.C. REFINEMENT OF THE
SOLUTION, BY GRADENT PROCEDURE
WITHIN THE SPECIFIED INTERVALS

IS THE NUMBER OF
ITERATIONS  SUPERIOR TO
LIMIT

YES

DISPLAY CRITERIUM VALUE
EXPERIMENTAL AND IDENTIFIED
RESISTIVITY  CURVES

Fig. 2. Flow-chart of the computer program.

theoretical function should be defined. The criterium we have chosen after
various numerical experiments is the following:

K {
) (Tj — T(J\J, Ol it s e =15 PI_, Ay Pﬂ,))z
2_. En i

7

C(els €2, ...,6p-1,01, P2 ..., P?L) =

=
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If C(mi) < C(m,) resume step c) replacing m, by m,, else set 6 = 0/2 and
resume step d)

f) stop the calculation whenever attaining a value | C(m) | < ¢ where ¢
represents the desired precision of identification for the criterium C.

For more details about gradient methods the reader is referred to Abadie
(1966).

4.2. Identification of the resistivity transform
Let Ty, T», ..., T3 be the values of the resistivity transform at points
A, ..., A We wish to obtain a theoretical function T'(, ¢, . .., (T
.., p,) that best fits the values T, ..., Ty o T ot poitits Ky, 4o, A, and
that fullfills the following requirements:

a) the number » of layers is fixed.
b) g1 and p, are given
c) the variation of the resistivities p; and of the thicknesses e; are confined
within certain intervals, i.e.
s IR 1,
Pirmin = Pi = Phimax and
Vi —=E, =T
ehmin = €1 = &i,maa-

Posing the problem in this form is important for the practical geophysician.
Very often he is confronted with the problem of determining the resistivities
tor drill holes for which he has the thicknesses. Furthermore, the knowledge of
the geology of the soil he is surveying permits him to suppose the limits of
certain layers. Thus, adapting the algorithm to fulfill the requirements defined
by points a), b) and c) of (4.2) above is of great help to the interpreter.

The authors wish to underline here that, if the algorithm was written to
find systematically a solution with a constant number of layers and with no
limitations on thicknesses or resistivities, a Dar Zaruk equivalent solution
should afterwards be sought in order to adapt the interpretation to the geology.

Nevertheless, the interpreter, if he has no idea whatsoever of the resistivity
and thicknesses distribution, can assign to # a large value (20 as a maximum
for the present computer program) and give fairly large intervals of variations
to the resistivities and thicknesses. He could then interpret the Dar Zaruk
curve thus obtained. :

An algorithm was developped to treat the problem of identification and a
programme was written in Fortran. Numerical experiments are exposed in
chapter 5.
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This method was also used to recalculate Ghosh’s coefficients. The results
were satisfactory.

4. AUTOMATIC IDENTIFICATION OF RESISTIVITY SOUNDING
To a given layer distribution of thicknesses e1, ..., €, ... éa and resistivities
01, «++y @fs -+ +» Pus pn being the substratum resistivity, corresponds one and
only resistivity transform:
T()\J €1, vy ejx vov By PL, -« ., Pir -+ P'H,)-

Thus, identification of an apparent resistivity function is equivalent to the
identification of its associated resistivity transform, which can easily be
obtained by the application of Ghosh’s filter or any other filter obtained by the
methods suggested in the preceding section.

4.1 General discussion of function identification

The problem of the identification of the resistivity transform 71" is the same
as the identification of any experimental function with a theoretical one
f(n, 1m), where # = (my, . . ., my) are the parameters that one wishes to determine.

There is a great variety of methods that has been developed for such an
identification. A good number of these are based on gradient methods used to
minimize a criterium that measures the difference between the experimental
and theoretical function,

If Fj,§ = 1, ..., nare the values of the experimental function at the points
%, a largely used criterium to measure the difference between this function and
a theoretical one f(A, ) 1s:

n

Clm) = T (Ey— fOy, m))? s
The gradient of C relative to m = (mn, ..., my) is equal to:
( o C o ¢ )
ot dme” T vyt T dmg
where
aC = f (N, m)

D ot i —— L (Fy— f(hg, m)). (2
- D i (Fy— [0, m) (42)

j=1
The simplest gradient method used could be resumed by the following steps:

a) choose a certain value 6 > 0 and a logical value m,
b) compute C(m,)

c) compute the gradient g(m,) = (3C/dm) / m = m,
d) compute a new value of m, m; = m, — 0g

e¢) compute C(m,)
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significance of A1 and Az is clear from fig. 1. Thus, if one chooses K — [AT/
Ax] 4 1, and L = [A2/Ax] 4 1 the calculation will be exact provided that we

i=— it P
adopt for A(KAw) the value X h(iAx) and for #(LAx) the value X h(iAx),

i=—w i=1
and that we take for A(jAx) j = — k& + 1, ..., L, the true value calculated in
equation (3.1).

It should be remarked that, according to the preceding discussion, the
number of coefficients to be considered is dependent on the domains A1 and Az
at the exterior of which the considered resistivity curve has its value practically
equal to g1 or p, respectively (see fig. 1).

Concerning this, numerical experiments drawn with Ghosh’s “long” filter
coefficients proved highly satisfactory, despite the fact that this filter was
composed of only twelve elements.

The second method we suggest is simpler in its aspects but less attractive
in its theoretical basis. Nevertheless, it is in part based on the assumption that,
provided the number of filter elements is large enough, there should exist a
linear filter that realizes the the transformation of pas into 71" (see the above
discussion).

Let us consider for example the equation:

+o

() sy = |

—m

s Ji(ns) ds

E' i 32)712 i X

(Koefoed 1968).

The variable change given in 2 gives

+m
3a

E e Mo = | Lam Ty~ d

=

If the Fourier spectrum of e*/(x + €**)”? could be considered as practically
band-limited within ]— /., 4+ f.[, we can write with the notation of the
previous paragraphs:
62(7rz-n—j)-t\:v)7!2

(I 4 eQ(mri)A:a:)ﬂZ

(67B0R% L o BMoATY | 15 g8=meds o Z h(7Ax)

j=—-K

form, = —K, ..., 0, . L,

This is a system of (K 4 L + 1) linear equations with (K 4 L + 1) linear
unknowns A(jAx), j =-—K, ...,0, ..., L, which are nothing else than the
filter coefficients.
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We have also calculated a 29 element filter for a cut-off frequency of f. =
3/(In 10). We give the coefficients obtained:

'y
Rl)s B ==, .00, ey IOk
—0.0074 0.0I330 —0.0I992 0.02946  -—0.0085 —0.1163
0.11696 0.2071 0.2192 0.1631 0.1283 0.0823 0.0638
0.0376 0.031I3 0.0163 0.0157 0.00044  0.00837  0.00198
0.00484 0.000009 0.00312  —0.0008 0.00224  —0.00IT 0.0018

—0.0012 0.0020

Before exposing the second method suggested it should be useful to make a
note as to the number of coefficients that should be calculated in equation
(3.1). Refer to fig. 1 for the following discussion.

fou

SAMPLE VALUES

1 el

a2 —l

Al

o By |-

~|B

Fig. 1. Application of a linear filter to a resistivity sounding.

Let A be the domain in which the values have been effectively measured in
the field, and D be the domain at the exterior of which p4s o0 py (on the right)
and pys o p1 (on the left), and suppose we want to obtain the values of T(y1)
in the entire domain A. We will proceed as follows:

a) we take sampled points on the curve of amplitude Ax
b) to calculate the value 7'(y,) at a sampled point y, we calculate

= m= +1L
T(ve) = = ’;3,”(3:0 — mAx) h(mAx), where i (mAx)

is the mth filter coefficient and (KX + L + 1) is the number of coefficients
considered.

Theoretically, the number of coefficients should be infinite. However, the
maximum number of coefficients with a negative index that multiply a value
pas different from g, is equal to [A1/Ax] (where [u#] represents the smallest
integer superior to #), and the maximum number of coefficients with a positive
index that multiply a value pqs different from p: is equal to [Az/Ax] where the
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We must, however, underline that the function to integrate (3.1) is
rapidly oscillating when # takes great values, and thus, a lot of care should
be taken when the integration concerns these values (thé pace should thén
be at least equal to half the period of oscillation).

We have recalculated Ghosh’s coefficients by this method. The limits of
integration taken are — 10 -+ kAx, 20 + kAx with « = # — kAx in equation

(3.1).

The pace of integration we took is the following:

. p = mw/16 for o << —8

. p =mf50 w —8 <u<—5
.j):n/moa w —5 <o —2
s e w —2 <a<6

= e AL 6 <oa<8

api—olet ¥ 8§ <a <10

where p represents the pace of integration.
From the asymptotic behavior of jl

Ji— ) oo -I,/—Z oS (e“ L 3_75) when « — + oo,
i ape® 4

and from

g%t A% — o% | Age® L,

we deduce that 2m/e* approximately represents the asymptotic period of
oscillation of function Ji, when « — + co. Thus, the last pace of integration
represents approximately I/3rd of the period of oscillation. The results are
nevertheless satisfactory, probably because of the little significance of the
integral in the concerned interval,

The values obtained are: &(—3), A(—2), A(—1), ..., &(8) = 0.00650,
—0.07828, 0.39991, 0.34916, 0.16754, 0.08586, 0.03575, 0.01977, 0.0067,
0.00514, 0.00067, 0.0018

These values, if rounded are equal to those calculated by Ghosh (1971).

We insist on the importance of the pace taken for the integration. In fact,
a simple Simpson variable pace integration method, taken from our mathe-
matical library of programs gave for 4(k), k =—3, ..., 0, ..., 8: 0.00378,
—0.07908, 0.3958, 0.3487, 0.1689, 0.0891, 0.0359, 0.0175, 0.0058, 0.00%3,
—0.0034, 0.00123, which could be qualified as comparatively poorresults.
Computing time was of 11.8 seconds on a CDC#600 for the first method, and
only of 0.6 seconds for the second method.
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spacing of electrodes in field work, and the effective calculation of the Fourier
spectrum of some two and three layers master curves has led him to choose for
fs the value 3/(2 In (10), (i.e. Ax = % In (10)) where In represents the Neperian
logarithm. Thus, it should be noticed that for curves of apparent resistivities
oas Whose spectrum extends far beyond these limits the theory is not valid.

b) Experimentally, a curve of apparent resistivity pqs has a band limited
spectrum contained within the limits ] — fe, + fe [ if its variations are very
smooth compared with any sinusoid of frequency superior to fe.

c¢) Due to the fact that a one layer apparent resistivity curve is a constant
equal to g1 and thus has a band limited spectrum (the well known Dirac
function), and that its resistivity transform is also p1, we can deduce from eq.
(2.6) that for any filter whatever the frequency f. is:

T h(kAx) = 1, where Ax = 1/2f,

me= —w

3. METHODS SUGGESTED FOR THE CALCULATION OF GHOSH'S LINEAR FILTER

The first method we suggest is based on the direct calculation of the integral
defined in (2.5). This calculation is necessarily a numeric calculation; there-
fore, the question arises as to the limit within which the calculation is to be
carried out.

Setting & = (m — m,), equation (2.5) becomes
WkAY) = | (sin(myfAx) | (eufAs)) Tu(bdx — u) du (3.1)
where Ax = 1/(2f;) = % 1n 10, and TJa(w) = Jule ).

Elementary properties of Bessel function Ji lead us to write for # — — co:
pll — ki [ o

[ =

Ju(kAx —u) = Ja(e® *4%) oo S and for i —> + o0; Ji(kAx —u) oo |/

o

e

37

cos (e“ :) , where & = # — RkAx.

Thus, Ji(kAx — u) is exponentially converging towards o when # tends
towards — o0 or - oo.

Furthermore |sin(mu/Ax) [ (mufAx)| is also converging towards o when u
tends towards — oo or | co.

Thus, the coefficient defined by (3.1) could accurately be numerically
calculated without having to take too large integration boundaries.

For example, if a precision of 0,5 + 10 * is desired for the values of 4(kAx),
it is sufficient to integrate the function defined by equation (3.1) between the
boundaries: — 10 4+ kAx, 20 + kAx.
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In other terms, the knowledge of 5,5 and T at every point x or y is equivalent
to the knowledge of 5,5 and T at a set of sampled points.

From (2.3) and (2.1) we deduce:

m= +w

f(j’o) = Jtm Z Pas(mAx) sin (f(x_A:tAi)) / (W(LA’:&AY)) jﬁ(jfu—x)alx

m=—m

m= +a Fi2

= Z Pas(mAx) - f (sin (Z:)/(Z:)) j1(('m-n—1n) Ax — u) du,

m=—-m

—m

where,
= x—mAx and,
Yo = molAx, Ax = 1/(2f,)

If we set

h((mo — m) Ax) = }m sin(rufAx)/ (ruf/Ax) T (mo —m) Ax —u) du  (2.5)

—m

we have

1'_“(11'&0!3:() —5 Bas (mAx) h((my— m) Ax) (2.6)
The quantities /((m, — m) Ax) represent Ghosh’s filter cocfficients. Ghosh

has calculated them indirectly by noting that the Fourier transform of

o) = | (sin (rofAn)(meA)) Tols — u) du

—w

is given by
) = F(sin (mufAx) | (mu/Ax)) - F(J),

Since §(sin(me/Ax) [ (eu/Ax)) is the well known constant band limited filter,
S (%) 1s equal to the restriction of (J1) on the interval ] — f,, fel. Thus, to
calculate the filter coefficients one has to calculate §(J1) in the interval | — g
+ f[ and, by calculating the Fourier inverse, compute the value h(kAx)
which are the filter coefficients.

Before defining any of the methods suggested for the filter calculation, it
seems useful for the comprehension of the experimental part of this paper to
underline the following points:

a) the theory is entirely based on the fact that ps has a band limited
spectrum between — f; and + f,. Ghosh’s choice of f, based upon the classical
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2. GrOSH'S THEORY AND METHOD FOR THE FILTER DETERMINATION

The apparent resistivity in the Schlumberger arrangement is given by the
classical Stefanesco relation:

Sas— pilX 285 LB Tu(hs) 28N

where B(2) is the kernel function. The resistivity transform is defined by
T(2) = p1(x + 2B(})), and (Ghosh 1971), we have:

T = [ pas(s) Ju(rs)/s ds
Setting s1 = €% A = e~ ¥ in the above integral one obtains:
T(e%) = | pas(e®) Jule=) dx

if we define:

T(y) = T(e ¥), pas®) = pas(e®), Ja(w) = Jale¥)
we have:

T() = [ past®) Jily — ) dx (2.1)

thus T'(y) is obtained as the convolution product of gas and J1; the application
of the Fourier transformation to both sides of equation (2.1) gives:

() = S6as) - () (2.2)
where §(g) denotes the Fourier transform of g. Ghosh’s idea is then the fol-
lowing:

If the Fourier spectrum of §45 is band limited ;
i.c. F(pas) (v) o0 if v does not belong to the interval ] — fe + il

then we deduce from (z.2) that §(7) is also band limited, and according to
Shannon’s theorem (Ghosh 1971) we can write:

m= +w

cust) = ) Faslnt) sin (CIE) () s

m=—m

and

m= +m

T(y) = Z T (mAy) sin (w(y—A?;M) / (ﬁ(y—/_\@) (2.4)

m= —m

where
Ax = Ay = 1/(2f)




