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ABSTRACT
Bicrara, M., and LaksHMANAN, ]., 1979, Automatic Deconvolution of Gravimetric
Anomalies, Geophysical Prospecting 27, 798-807.

Existing techniques of deconvolution of gravity anomalies are principally based on
upward and downward continuation of measured fields. It can be shown that a unique
set of linear filters, depending only on geometrical parameters, relates density distribution
at a given depth to gravity measured on the surface. A method to compute the filter
coefficients is developed. Very accurate reconstitution of theoretical models of intricate
shape, prove the validity of the linear relationship. One of these sets of linear filters is
applied to a field case of underground quarries.

I — LINEARITY OF THE RELATIONSHIP BETWEEN GRAVITY AND DENSITY
DISTRIBUTIONS
I.1i— LA PORTE method:
La Porte (1963) established an iterative method for the reconstruction of

an underground geological structure from the gravity field on the surface of
the ground.

‘In the first step the field is continued upwards:

g(x,y,+2)= p- f f 8.0 dx dy (1)

(%2 + y2 + 2?) (%2 4 V2 - 22)8/2

Next the field is continued downward by:
2

gy, —2)=—g@xy +2)+2¢ (%90 )+z2§ (x, ¥, 0)

oL U k(g
+2Z G (1’?}'0). (2)
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Finally, La Porte calculates a surface density distribution at depth z from

_ _ 38y —2)
o (x,y, —2)= = (3)

or a volume density distribution from

3¢ (x, vy, —
8 (v, v, —2) = %—ﬂ, (4)

where ¢ is the thickness of the layer at depth —z.

Equation (4) and (5) suppose that the variation of the gravity field are due
to the density variations within one layer at depth —z.

The La Porte method is very interesting and justifies itself by equations (1)
to (3). It has been used by us for several problems. Nevertheless, it is a costly
method needing many computations (see equations (1) and (2)). Furthermore,
problems due to the discretisation of equation (2) often arise. These problems
were already discussed in detail in La Porte (1963).

1.2 = Relationship between gravity and density distribution:

From equations (1), (2), and (3) one notes that, for a given depth —z, ¢, and §
are linear in g (x, ¥, o). Therefore, there exists a transformation with the
following properties: o= (g
if o1= §(g1) and 52 = F(g2), then o1+ oa= F(g1+g2); A is a scalar, then Ao =
S(g).

This follows from the fact that:

£ (x, y,+2) is linear in g (v, ¥, 0) (see equation(1))

2% (%, 3, 0)
Py
g (¥, ¥, 0), and consequently from equation (3) the existence of function § is
demonstrated.
According to Schwartz’s theorem (see Yosida 1968) § could be represented by
convolution with a kernel function K. We can write

is linear in g (x, y,+2) at z=o0, thus g (v, ¥, —2) is linear in

o (%0, yo,—2)= | [K (x—20, y—y0,2) g (%, y) dxdy. (5)
From equation (3) it is evident that & (v, ¥0, 2) can be expressed by an
integral equation similar to (5).

Discretization and limitation of equation (4) gives the equation:
+ M +N

Ao (ji—ze)= = 2 amg(i—h j—1) (6)

k=—-M k=-N

where the aj; depend on the grid dimension, the depth 2, and the thickness e.
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The value oy is referred to as the filter coefficient. This denomination follows
from a more general idea for the discretization of a convolution integral. For
more informations the reader is referred to Ghosh (1971) or Bichara and Laksh-
manan (19706).

The idea is the following:

There is theoretical reason for the existence of a filter (a4;) realizing equation
(6). This filter has been calculated and tested on various theoretical cases. We
found that it was efficient and quite adapted to a density reconstitution at a
given depth z.

I1 — CarLcuraTioN oF THE FILTER COEFFICIENTS

Proposed method

If equation (6) is valid, it follows that the coefficients uz; depend only on
geometric factors (grid, depth, and thickness of the source layer). Therefore
they are unique and can be computed by considering the effect of any sort of
source, for example a right prism.

Let us consider the effect of a right prism of length ay, height e, situated at a
depth z, and with a density contrast of 1, centered on point (m, 1) on a grid of
dimensions (2m — 1) aq, (21— 1) ay; let g (7, j) denote the gravity effect of that
prism at point (7, j). The gravity anomaly is given by

({+1—m) (j+1—n) azay

2
Ag = —Ag e jarctg —_—
£73 5 V(i +1—m)® al + (j+ 1— n)’a’+ 2°

(t—m) (j—n) aay

z V(i —m)® ax® + (j— n)?al, + 2*

+ arctg

(i +1—m) (j—)nazay
— aretg — 2 2 : z 2, 2
zl/(z+I—m) ay + (j—n)a,+ 2

(i —m) (J+ 1 —n) azay

—arctg - — O
o Vi - m)ay + (j + 1—n)’a’, + z, ©)
Actually, the more accurate equations by Nagy (1966) were used.
We can then write a system of (m x #) equations
+m +n
bX L oamgi—kj-1l) =0 Y57 #@mn (7)
k= —m 1= —n
+m + 1
M) X wgrg (m—k n—1)= Ac, with the oy (8)

ke==m I=-—n

as the m x # unknowns.
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Solving these linear equations, we can compute # x # filter coefficients valid

for a given set of values of ag, ay, ¢, and z.

The filter size (m x#) and the grid size (2 — 1) x (21— 1) should in theory
be infinitely large. However, we have found empirically that the filter size
is correct if outside the complete grid (2m — 1) x (27 — 1) the gravity anomaly

is less than a hundredth of the maximum anomaly.

11.2 — Experimental results
TFor a right prism with

ay=a,=10m
overburden z

height

e =

density contrast 1 g cm-?

cients are given on figure 2.

m
1]

10 m
3m

we obtain the anomaly shown in fig. 1.
For a grid of dimensions 2m— 1=2n—1=13 (m=n=7); the filter coeffi-

Fig. 1. Anomaly due to a square right prism, 3 m high, 1o m Jarge, at rom depth (point PP
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Fig. 2. Filter coefficients (point P is the center of symmetry).
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We have

I
Z agy = 0.07908 instead of the theoretical value 0.07974 = f; 2 This

theoretical value follows from the equation (4) applied to a layer of constant
thickness and contrast: '

for As= %{j :

with e =3 m and Ag in 0.01 mgal,
Ao =0.07974 Ag. Application of the filter of fig. 2 gives
Ao = (Zoug) Ag = 0.07968Ag.

The close agreement confirms elegantly our theoretical assumptions.

111 — EXPERIMENTAL RESULTS

The following examples concern mathematical control of the accuracy of
the filters used. Figure 3 gives the theoretical density distribution: 7 blocks
10 mx 1o m and 3 m height along a line, at 1o m depth with a density con-
trast of 2 g cm3. Figure 4 gives the gravity anomaly of this model and figure 5

T

Y

Fig. 3. Model 1.
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Fig. 4. Anomaly due to madel 1 (contours in o.01 mgal).

-2.0058] -.003 | -.003 | .007 ..OEG . 031 .002
-.003 [-2.000]-.000 | .0OI .0z21 . 068 .031
-.003 | -.000 |-2.001|-.001 |-.000| .021 .08
007 . 0ol =001 <2.000})-.001 .00l1 .007
.088 .021 -oo00 |-.001 |-2.00! | -.000]-003
. 031 066 .021 .00l -.000 |-2,000] =003
002 . 031 .056 007 [|-003 [-.003 [-2.008

Fig. 5. Model 1 computed by linear filter.
Standard deviation of densities 0.004 gfcm3.
Standard deviation of recomputed anomaly 0.0006 mGal

gives the reconstructed model. The standard deviation on the density is
0.004 g cm3 (maximum .056). The standard deviation of the gravity anomaly
due to this structure compared with the original one is 0-00. 102 mgal for
an average anomaly of 1.60 .10°2 mgal.
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The second model is more complicated (figure 6): it consists of 24 little blocks
with density contrast —2 g cm-2separated by 25 blocks with density contrast o.

/I%I%

20m.

Fig. 6. Model z.

o —

o

///’W—W

1

Fig. 7. Anomaly due to model 2 (contours o.01 mgal).
Point o is center of symmetry.
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Figure 7 shows a quarter of the anomaly due to this model. The combined
effect of the 49 blocks is practically equivalent to that at a single big block
with density contrast —1 g cm-3.

The filter result is quite spectacular (figure 8). The mean square difference
on the density is .052 g cm?, the largest difference being. 065 g cm®. The mean
square difference on the reconstructed gravity anomaly is .16 -10°2 mgal for
an average of 6.0 ‘102 mgal.

s | -1,8a| ooar] .87 | ccar|.iea| ooe
1,94 | 0,07 | -1.e2] c.on0] -1 935| c.0BT| 104
o.0z7| -1.988| oows| -: 97A © oas| -1888] ocwer|
o732 cos | -lerz] 0o |-1072| coB | -1e7y
0 027 -1.928] oose -ie72| oome| -19m8| o027
<ima | osr | -1e38] o083 | «1.938| coB7| -1ma
o8 | 184 | oo27| -1.07 | c.027| -194 | core

Fig. 8. Model 2 computed by linear filter.
Standard deviation of densities 0.025 gfcm?®.
Standard deviation of recomputed anomaly o.0016 mGal.

Field vesults

Of course, these quite extraordinary results were obtained on theoretical
models, and the reader would be quite justified in asking for practical results.
Some of these were presented at the 1974 Hanover Symposium on Engineering
Geology and have been controled by drilling. The studies presented at this
symposium concerned detection of sinkhole areas in gypsum, 45 m deep.

More recent work has been carried out by CPGF in the Caen area (Normandy,
France) where large underground limestone quarries are found. These quarries
are approximately 4 m high and have very variable horizontal extension.

Figure g shows the map of such a quarry located by a gravity survery, and
gives the reconstituted density of prisms 14 m x 14 m X 4 m.

The close correlation can be appreciated by computing percentage of quarried
surface inside each T4 m x 14 m square (5) and comparing this percentage with
the reconstituted densities D.

Figure 10 gives this correlation. We have S = —0.385 (D + 0.75) + 0.383 or,
admitting a least squares relationship passing through the origin S= —o0.465 D.
This means that the average limestone density contrast for S=1 would be
D= —1/0.465= —2,15 gcm®, which seems to be a correct density for this
Jurassic limestone.

Geophysical Prospecting 27 53
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Tig. 9. Comparison between quarry map and densities computed by Filt program.

PERCENTAGE
QUARRIED

S%=3845(D+0,75).3828 |

L A
2 A A A %A
A A
COMPUTED DENSITY (gm /cc)

Fig. 1o. Correlation between computed density and surface of quarries.

CONCLUSIONS
The described work has been carried out by the Compagnie de Prospection
Géophysique Frangaise, on a French Government research grant (Délégation
Générale a la Recherche Scientifique et Technique). Further work is now being
done for systematic use of several filters, to start with a preselected main layer,
and building up (or down) density distribution from the residual difference
between reconstituted and measured gravity.
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